NEC'S NPN SIGE RF IC IN A 8-PIN LEAD-LESS MINIMOLD

FEATURES

CEL

- OUTPUT POWER: Pout = 19 dBm @ Pin = -3 dBm, VCE = 3.6 V, f = 5.8 GHz
- LOW POWER: Ic = 90 mA @ Pin = -3 dBm, Vce = 3.6 V, f = 5.8 GHz
- SINGLE POWER SUPPLY OPERATION: VCE = 3.6 V
- BUILT-IN BIAS CIRCUIT
- 8-PIN LEAD-LESS MINIMOLD: (2.0 × 2.2 × 0.5 mm)

DESCRIPTION

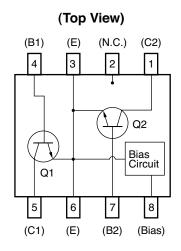
NEC's UPA901TU is a silicon germanium HBT IC designed for the power amplifier of 5.8 GHz cordless phone and other 5.8 GHz applications. This IC consists of two stage amplifiers and has excellent performance, high efficiency, high gain, low power consumption.

NEC's UPA901TU is packaged in surface mount 8-pin leadless minimold plastic package.

This device is fabricated with our SiGe HBT process UHS2-HV technology.

APPLICATIONS

- 5.8 GHz Cordless Phones
- 5.8 GHz Band DSRC (Dedicated Short Range Communication) System
- 5 GHz Band Video Transmitter


ORDERING INFORMATION

PART NUMBER	ORDER NUMBER	QUANTITY	PACKAGE	MARKING	SUPPLYING FORM
UPA901TU	UPA901TU-A	50 pcs (Non reel)	8-pin lead-less	A901	 8 mm wide embossed taping
UPA901TU-T3	UPA901TU-T3-A	5 kpcs/reel	minimold(Pb-Free)		Pin 1, Pin 8 face the perforation side of the tape

Remark To order evaluation samples, contact your nearby sales office.

The unit sample quantity is 50 pcs.

PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (TA=+25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Collector to Base Voltage	Vсво	15	V
Collector to Emitter Voltage	VCEO	4.5	V
Emitter to Base Voltage	Vebo	2	V
Collector Current of Q1	Ic1	75	mA
Collector Current of Q2	Ic2	250	mA
Bias Current	BIAS	25	mA
Total Power Dissipation	Ptot Note	410	mW
Junction Temperature	Tj	150	°C
Storage Temperature	Tstg	-65 to +150	°C
Operating Ambient Temperature	TA	-40 to +85	°C

Note Mounted on $20 \times 20 \times 0.8$ mm (t) glass epoxy PCB (FR-4)

THERMAL RESISTANCE (TA =+25°C)

PARAMETER	SYMBOL	TEST CONDITIONS	RATINGS	UNIT
Channel to Ambient Resistance	Rth (j-a1) Note		150	°C/W
	Rth (j-a2)	Free Air	TBD	°C/W

Note Mounted on $20 \times 20 \times 0.8$ mm (t) glass epoxy PCB (FR-4)

RECOMMENDED OPERATING RANGE (All Parameters)

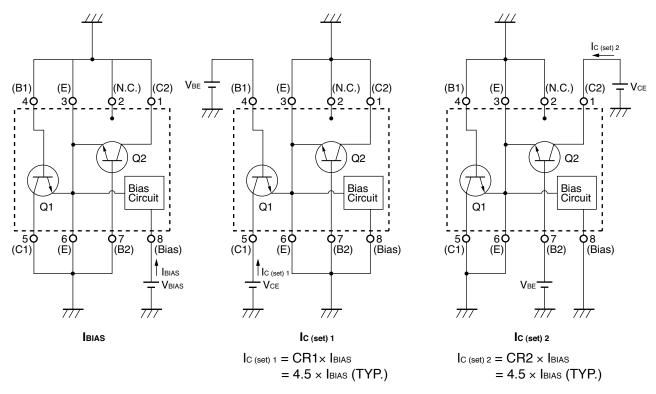
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Collector to Emitter Voltage	VCE	-	3.6	4.5	V
Total Current	Itotal	-	90	300	mA
Input Power	Pin	-	-3	+5	dBm

ELECTRICAL CHARACTERISTICS (TA = +25°C) -DC CHARACTERISTICS-

(1) Q1

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Collector Cut-off Current	Ісво	$V_{CB} = 5 V, I_E = 0 mA$	-	-	60	nA
Emitter Cut-off Current	Іево	V _{EB} = 1 V, Ic = 0 mA	-	-	120	nA
DC Current Gain	hfe Note	Vce = 3 V, Ic = 6 mA	80	120	160	-
Current Ratio (Ic (set) 1/IBIAS)	CR1	$V_{CE} = 3.6 \text{ V}, \text{ V}_{BE} = \text{V}_{\text{BIAS}} = 0.865 \text{ V}$	2	4.5	9	-

(2) Q2


PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Collector Cut-off Current	Ісво	$V_{CB} = 5 V, I_E = 0 mA$	-	-	200	nA
Emitter Cut-off Current	Іево	V _{EB} = 1 V, Ic = 0 mA	-	-	400	nA
DC Current Gain	hfe Note	Vce = 3 V, Ic = 20 mA	80	120	160	-
Current Ratio (Ic (set) 2/IBIAS)	CR2	$V_{CE} = 3.6 \text{ V}, \text{ V}_{BE} = \text{V}_{BIAS} = 0.865 \text{ V}$	8	10	13	-

(3) Bias Circuit

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Bias Circuit Current	Ibias	VBIAS = 0.865 V	-	4	-	mA

Note Pulse measurement: PW \leq 350 μ s, Duty Cycle \leq 2%

IBIAS, IC (set) 1, IC (set) 2 MEASUREMENT CIRCUIT

The application circuits and their parameters are for reference only and are not intended for actual design-ins.

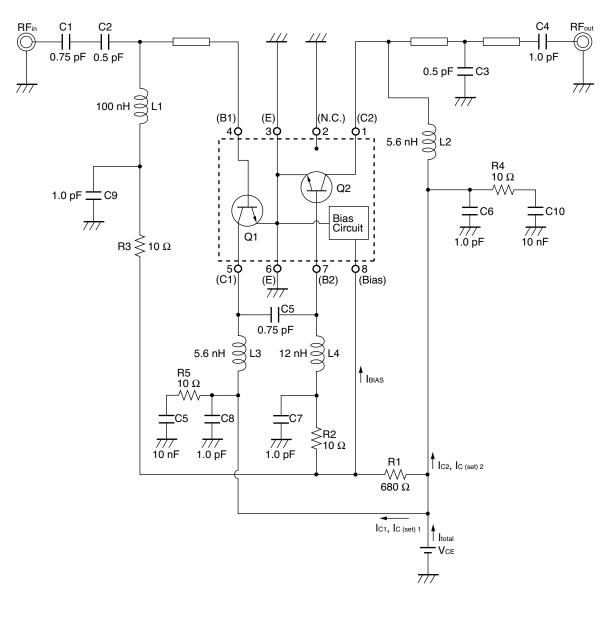
ELECTRICAL CHARACTERISTICS (TA = +25°C)

-RF CHARACTERISTICS-

(1) Q1

PARAMETER	SYMBOL TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
Insertion Power Gain (Q1)	I S _{21e} ²	Vce = 3.6 V, lc = 12 mA, f = 5.8 GHz	8.5	10.0	11.5	dB
Maximum Available Power Gain (Q1)	MAG1	Vce = 3.6 V, lc = 12 mA, f = 5.8 GHz	13.5	15.0	-	dB
Output Power (Q1)	Pout1	Vce = 3.6 V, Ic (set) = 12 mA,	10.2	11.2	-	dBm
		$f = 5.8 \text{ GHz}, P_{in} = -3 \text{ dBm}$				
Collector Current (Q1)	lcc1	Vce = 3.6 V, Ic (set) = 12 mA,	_	20	_	mA
		f = 5.8 GHz, Pin = -3 dBm				

(2) Q2

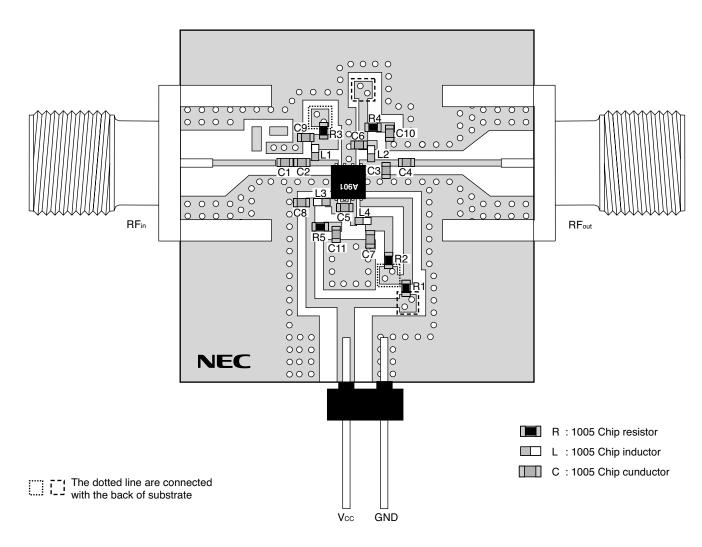

PARAMETER SYMBOL TEST CONDITIO		TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Insertion Power Gain (Q2)	I S _{21e} ²	Vce = 3.6 V, lc = 40 mA, f = 5.8 GHz	2	3.5	5	dB
Maximum Available Power Gain (Q2)	MAG2	Vce = 3.6 V, lc = 40 mA, f = 5.8 GHz	8.5	10.0	10.5	dB
Output Power (Q2)	Pout2	Vce = 3.6 V, Ic (set) = 40 mA,	17.5	19.0	-	dBm
		f = 5.8 GHz, P _{in} = 11 dBm				
Collector Current (Q2)	lcc2	Vce = 3.6 V, Ic (set) = 40 mA,	_	70	_	mA
		f = 5.8 GHz, P _{in} = 11 dBm				

(3) Q1 + Q2, 2 stage Amplifiers

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Output Power (Q1 + Q2)	Pout	VCE = 3.6 V, RBIAS = 680 Ω,		19.0	-	dBm
		f = 5.8 GHz, Pin = -3 dBm				
		Note				
Total Current (Q1 + Q2)	Itotal	$V_{CE} = 3.6 \text{ V}, \text{ R}_{BIAS} = 680 \Omega,$	-	90	-	mA
		f = 5.8 GHz, P _{in} = -3 dBm				
		Note				

Note by MEASUREMENT CIRCUIT 1

MEASUREMENT CIRCUIT 1

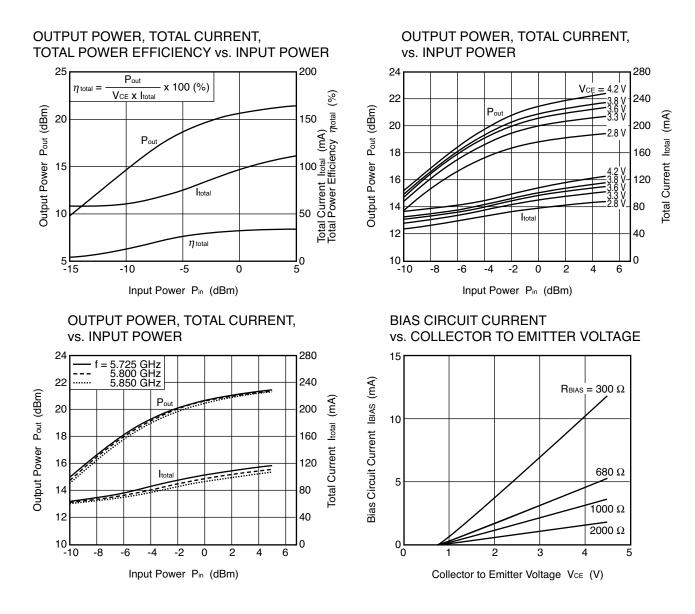


 $I_{C (set) 1} = CR1 \times I_{BIAS}$ $= 4.5 \times I_{BIAS} (TYP.)$

 $I_{C (set) 2} = CR2 \times I_{BIAS} \\ = 4.5 \times I_{BIAS} (TYP.)$

The application circuits and their parameters are for reference only and are not intended for actual design-ins.

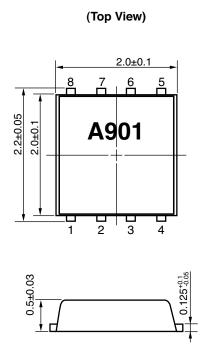
ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

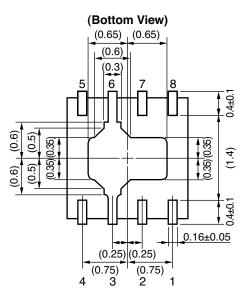

Remarks

- 1. Substrate : $20 \times 20 \times 0.8$ (t) mm FR-4 (4 Layer, each thickness 0.2 mm), copper thickness 18 μ m, gold flash plating
- 2. Back side : GND pattern
- 3. o : Through hole

SYMBOL	VALUES	SYMBOL	VALUES
R1	680 Ω	C2	0.5 pF
R2	10 Ω	C3	0.5 pF
R3	10 Ω	C4	1.0 pF
R4	10 Ω	C5	0.75 pF
R5	10 Ω	C6	1.0 pF
L1	100 nH	C7	1.0 pF
L2	5.6 nH	C8	1.0 pF
L3	5.6 nH	C9	1.0 pF
L4	12 nH	C10	10 nF
C1	0.75 pF	C11	10 nF

USING THE NEC EVALUATION BOARD





Remark The graphs indicate nominal characteristics.

PACKAGE DIMENSIONS

8-PIN LEAD-LESS MINIMOLD (UNIT:mm)

Remark (): Reference value

Life Support Applications

These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

02/15/2005

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix –A indicates that the device is Pb-free. The –AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)	Concentration contained in CEL devices		
Lead (Pb)	< 1000 PPM	-A -AZ Not Detected (*)		
Mercury	< 1000 PPM	Not Detected		
Cadmium	< 100 PPM	Not Detected		
Hexavalent Chromium	< 1000 PPM	Not Detected		
РВВ	< 1000 PPM	Not Detected		
PBDE	< 1000 PPM	Not Detected		

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.

See CEL Terms and Conditions for additional clarification of warranties and liability.

Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.